Single cell isolation process with laser induced forward transfer

نویسندگان

  • Yu Deng
  • Philippe Renaud
  • Zhongning Guo
  • Zhigang Huang
  • Ying Chen
چکیده

BACKGROUND A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. RESULTS The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. CONCLUSION LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Speed Photography of Laser Induced Forward Transfer (LIFT) of Single and Double-layered Transfer Layers for Single Cell Transfer

Bioprinting technologies allow the construction of tissue-like structures from different cell populations. Fundamental research on the influence of the cell micro-environment requires printing of single cells in specific patterns on a microscopic scale. Single cell printing of living cells has been performed by nozzle based techniques or micro-pipetting, and laser-induced forward transfer (LIFT...

متن کامل

Numerical study of thermal dynamics of gold nanoparticles in laser-induced hyperthermia therapy

Damage of the normal tissue is a serious concenrn in cancer treatment. Hyperthermia by laserhas been considered as a safe cancer treatments methods with lower harmful effects on normaltissues. Using nanoparticles in cancer treatment has improved laser therapy, which is based ona selective cell targeting method to localize cell damages. Metallic nanoparticles such as gold,silver, and copper have...

متن کامل

Live cell isolation by laser microdissection with gravity transfer.

Laser microdissection by pulsing ultraviolet laser allows the isolation and recultivation of live cells based on morphological features or/and fluorescent labelling from adherent cell cultures. Previous investigations described only the use of the laser microdissection and pressure catapulting (LMPC) for live cell isolation. But LMPC requires complex manipulations and some skill. Furthermore, s...

متن کامل

Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films

We present laser-induced forward transfer of solid-phase polymer films, shaped using a Digital Micromirror Device (DMD) as a variable illumination mask. Femtosecond laser pulses with a fluence of 200-380 mJ/cm at a wavelength of 800 nm from a Ti:sapphire amplifier were used to reproducibly transfer thin films of poly(methyl methacrylate) as small as ~30 μm by ~30 μm with thickness ~1.3 μm. This...

متن کامل

Time-resolved digital holographic microscopy of laser-induced forward transfer process.

We develop a method for time-resolved digital holographic microscopy to obtain time-resolved 3-D deformation measurements of laser induced forward transfer (LIFT) processes. We demonstrate nanometer axial resolution and nanosecond temporal resolution of our method which is suitable for measuring dynamic morphological changes in LIFT target materials. Such measurements provide insight into the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017